

Learning with instance-dependent label noise: A sample sieve approach

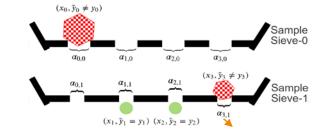
Hao Cheng*, Zhaowei Zhu*, Xingyu Li, Yifei Gong, Xing Sun and Yang Liu#

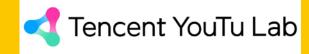
zwzhu, yangliu@ucsc.edu

Code

REsponsible & Accountable Learning (REAL) @ University of California, Santa Cruz

https://github.com/UCSC-REAL





Background

• Problems: $Y \to \tilde{Y}$

Wrong correlation patterns
 Expensive human-efforts to fix errors

UC SANTA CRUZ

Background

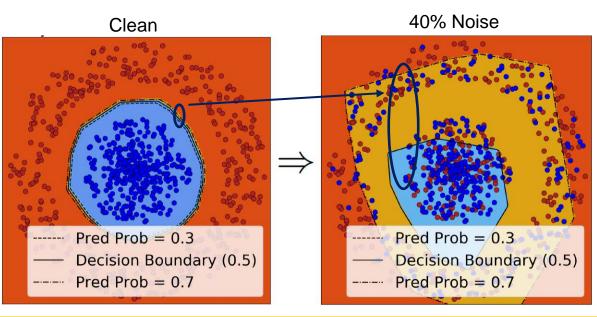
- Challenges:
 - 1. Unknown noise rates $\mathbb{P}(\tilde{Y}|X,Y)$
 - 2. Instance-dependent label noise $\mathbb{P}(\tilde{Y}|X,Y) \neq \mathbb{P}(\tilde{Y}|Y)$
 - while noise existing works [1-3] assume feature independency $\mathbb{P}(\tilde{Y}|X,Y) = \mathbb{P}(\tilde{Y}|Y)$
 - 3. Loss-correction/reweighting [1-3]: hard to estimate $\mathbb{P}(\tilde{Y}|X,Y), \forall X$
- Solutions:
 - 1. Confidence regularizer (learn *clean* distributions) CR
 - 2. Dynamic sample sieve (separate *clean/corrupted* examples) CORES²
 - 3. Regular training (sieved *clean* examples) +

Consistency training (features of sieved corrupted examples) - CORES^{2*}

[1] N. Natarajan, et al. "Learning with noisy labels." NeurIPS'13.
[2] T. Liu & D. Tao. "Classication with noisy labels by importance reweighting." TPAMI'15.
[3] G. Patrini, et al. "Making deep neural networks robust to label noise: A loss correction approach." CVPR'17.

Confidence Regularizer (CR)

Motivation



Observation: Label noise reduces the confidence of predictions

Our idea:

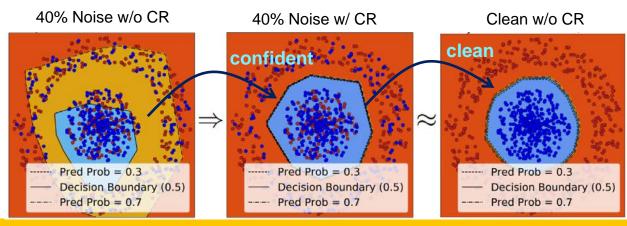
Encourage **confident** prediction to remove corrupted examples

Confidence Regularizer (CR)

• Solution:

Confidence Regularizer: $\ell_{CR}(f(x_n)) := -\beta \cdot \mathbb{E}_{\mathcal{D}_{\widetilde{Y}|\widetilde{D}}}[\ell(f(x_n), \widetilde{Y})]$

• 2-D visualization:

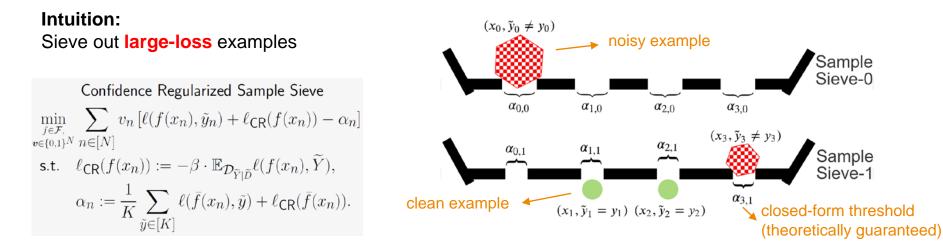


CR helps:

- 1. Make confident predictions
- 2. Learn clean distributions

Dynamic Sample Sieve

• COnfidence REgularized Sample Sieve (CORES²)



UC SANTA CRUZ

Theoretical Results

• **Theorem:** CORES² sieves out the corrupted examples:

- 1. Condition: Classifier predicts better than *random guess* on the example
- 2. Conditions:
 - clean labels = Bayes optimal
 - noisy labels are informative
 - infinite model capacity and sufficiently many examples
 - minimize CR-regularized CE loss

• Why this is true?

1. Decoupling the expected CR-regularized CE loss:

noisy loss with CR = clean loss + label shift + noise effect (β)

2.CR helps learn the clean distribution:

noise effect can be **canceled** or **reversed** by proper β

3. Proper setup of threshold α (guaranteed closed-form)

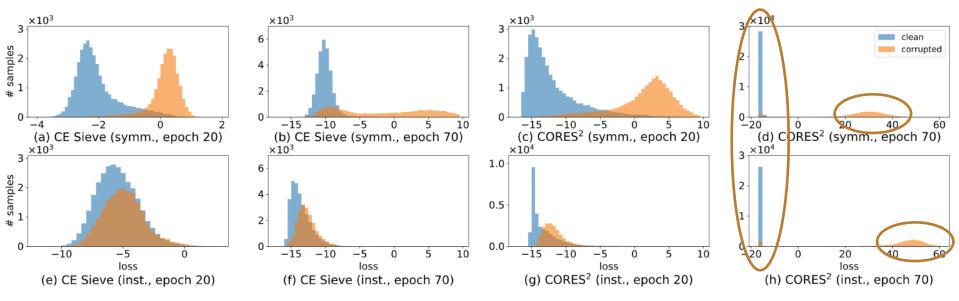
2. clean \rightarrow corrupted, corrupted \rightarrow clean

1. clean \rightarrow corrupted, corrupted \rightarrow clean

Experiment

Symm.: feature-independent Inst.: instance-dependent Goal: split clean vs. corrupted

Loss distributions of training w/ or w/o CR



After sample sieve, we can treat "clean" and "corrupted" examples differently

UC SANTA CRUZ

Experiment

Method	Inst. CIFAR10			Inst. CIFAR100		
	$\varepsilon = 0.2$	$\varepsilon = 0.4$	$\varepsilon = 0.6$	$\varepsilon = 0.2$	$\varepsilon = 0.4$	$\varepsilon = 0.6$
Cross Entropy	87.16	75.16	44.64	58.72	41.14	25.29
Forward T (Patrini et al., 2017)	88.08	82.67	41.57	58.95	41.68	22.83
L_{DMI} (Xu et al., 2019)	88.80	82.70	70.54	58.66	41.77	28.00
L_q (Zhang & Sabuncu, 2018)	86.45	69.02	32.94	58.18	40.32	23.13
SCE (Wang et al., 2019)	89.11	72.04	44.83	59.87	41.76	23.41
Co-teaching (Han et al., 2018)	88.66	69.50	34.61	43.03	23.13	7.07
Co-teaching+ (Yu et al., 2019)	89.04	69.15	33.33	41.84	24.40	8.74
JoCoR (Wei et al., 2020)	88.71	68.97	30.27	44.28	22.77	7.54
Peer Loss (Liu & Guo, 2020)	89.33	81.09	73.73	59.92	45.76	33.61
$CORES^2$	89.50	82.84	79.66	61.25	47.81	37.85
Regular + Consistency) CORES ² *	95.42	88.45	85.53	72.91	70.66	63.08

Table: Comparison of test accuracies under instance-dependent label noise

IIC SANTA CRII7

Thank you !

Join our poster session!

@ Poster Session 9, May 5, 2021, 5 p.m. - 7 p.m. (PDT)